If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-1320=0
a = 1; b = 1; c = -1320;
Δ = b2-4ac
Δ = 12-4·1·(-1320)
Δ = 5281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{5281}}{2*1}=\frac{-1-\sqrt{5281}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{5281}}{2*1}=\frac{-1+\sqrt{5281}}{2} $
| 6(x+3)=3x+24 | | 7x-4=5x=10 | | 0.6^x=0.15 | | x^2-5x-199=0 | | 70=(x+3)×x | | 70=2x+3X | | y=(4/7)56-3 | | 24+0.25x=x | | 110=(x+12)+35 | | x-6/5=x+3/4 | | 180=(x+12) | | 10y*6y-4y=0 | | 36-x=3 | | 180=x+38+80+95 | | 12.9v+3.46+9.27=8.47-9.3v | | (8x-12)*X=308 | | -5.77+15.5g=15.8g-1.27 | | x^2-712x+49936=0 | | -19h-14=14+h+12 | | 90=95+85+38+x | | -13+8c=19+10c | | -12q=-13q-19 | | 8z=10z+10 | | x/5=x+2/4 | | 2v+10=9v-8-3 | | 6f=3f-6 | | 8859÷n=59 | | 7c-1=6+8c | | -5(-8n-7)=-10-5n | | 11-2x=5+3x | | 2(4n+2)=28+2n | | 90=(x+12) |